
© 2018 JETIR July 2018, Volume 5, Issue 7                                                                 www.jetir.org  (ISSN-2349-5162)  
 

JETIR1807964 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 438 
 

AN EFFECTIVE FPU STREAMING PROCESSOR FOR 

FPGA ACCELERATORS  
1
CHINTA SRAVANI, 

2
Dr. PRASAD JANGA, 

3
Mrs. SRIBINDU 

1
PG Scholar,

2
Associate Professor,

3
Associate Professor 

Department of ECE, CMR Institute of Technology, 

Kandlakoya, Hyderabad, Telangana, India 

 

Abstract : In order to increase the speed and decrease the taxation on the hardware, other components are used in the system such as 

accelerators which can boost speed of the circuit. Hardware accelerators use computer hard ware for performing functions more 

efficiently than software running on a more general purpose CPU. To perform operations at high speed we have custom circuits where 

flexibility of circuit is static and soft-process approach where there is only register to register transfer is present whose performance is not 

much efficient. 

To improve the flexibility and to overcome the faults in existing system a high performance streaming processor, known as 

streaming accelerator element, is proposed which realizes accelerators as large scale custom multicore networks. By implementing this 

approach with advanced program control and memory addressing capabilities, we can see that the program inefficiencies can be almost 

eliminated to enable performance and cost, which are not possible among other software-programmable solutions. When used to realize 

accelerators for matrix multiplication it is shown how the proposed architecture enables real-time performance. For accommodating the 

floating point operations we add Floating Point Unit (FPU) to the ALU of processing elements which performs IEEE754 2008 single 

precision floating point operations addition, multiplication, and subtraction. 

 

Index Terms -Field Programmable Gate Array (FPGA), Accelerators, Floating Point, Matrix Multiplication, Streaming Elements 

 

 

1.INTRODUCTION 

In order to increase the speed of operations in computers 

accelerators are used. As we  can see that the hardware 

acceleration is the use of computer hardware circuit for 

performing some functions more efficiently than that is possible 

through software running on a more general-purpose CPU. This 

hardware which performs the acceleration may be part of a 

general-purpose CPU, or it is designed as a separate unit. In the 

second case, where the circuit is designed as a separate circuit is 

referred to as a hardware accelerator. 

Processors were designed as sequential circuits which 

executes the instructions one by one, and these sequential circuits 

are designed to run general purpose algorithms controlled 

by instruction fetch which performs operations such as  moving 

temporary results to and from a register file. Hardware accelerators 

improve the performance of an algorithm by allowing specific 

data-paths for its temporaries and reducing the overhead of 

instruction control. We see that the modern processors are multi-

core and operate on parallel SIMD units. Basically, we see that 

there are different types of techniques for which we implement 

accelerators i.e., custom circuits, general purpose circuits, softcore 

processors, and software accelerating elements.  

Custom circuits are the circuits which are developed 

depending upon the required requirement. We see that in custom 

circuits the performance is achieved for maximum extent while 

cost of this procedure goes for a very high value which makes this 

a bit expensive. For overpowering such cost issues, we have 

approached a softcore processor.  

These softcore processors are implemented depending on 

the software approach where it follows a path with out any 

external circuit design. But this procedure does not show such 

compatible results concerning the performance of custom circuits. 

This technique is not cost effective but does not compare when 

compared with performance results of custom circuits. In order to 

have a procedure which compares with the performance achieved 

by custom circuits we use streaming accelerating elements for 

acceleration.   

The assets accessible inside present day FPGA, which 

might be utilized to form the accelerators, are uncommon: per-

second access to trillions of multiply– gather (MAC) tasks and 

bit-level memory areas through on-chip DSP units and block 

RAM (BRAM). These check FPGA as perfect hosts to superior 

custom registering designs for flag, picture, and information 

preparing. Be that as it may, as the scale and the advancement of 

FPGA gadgets increment with each passing age, saddling these 

assets turns out to be progressively difficult. Customarily, 

accomplishing essential execution and cost has required manual 

outline of custom circuits at enroll move level in an equipment 

plan dialect. This is an exceedingly viable approach, yet forces an 

overwhelming improvement stack because of the low level of 

outline reflection. 

Soft processors have been proposed to lighten this plan 

burden by employing a predominately software-based 

development course, yet at introduce, embracing such an 

approach requests significant trade off on performance and cost. 

No approach has been appeared to help execution and cost even 

near custom circuits planned through the customary approach.  

To resolve this issue a novel streaming accelerating 

element (SAE) is introduced which empowers programming 

based streaming element advancement, while keeping up the 

execution and cost of custom circuits.  

By application of streaming elements for matrix 

multiplication (MM), the accompanying commitments are made. 

1) A novel streaming processor for FPGA, the SAE, is depicted 

and appeared to conquer the execution confinements of existing 

soft processors.  

2) It is indicated how the SAE is exceptional among soft cores in 

empowering ongoing accelerators, for example, H.264 video. 

 3) It is indicated how SAE-based accelerators are one of a kind in 

showing execution and cost which are profoundly focused with 

custom circuits.  

4) It is demonstrated how SAE show execution and cost up to two 

requests of extent past that of existing delicate processors. To the 

best of our insight, the SAE is the most noteworthy execution, 

least cost programming programmable segment on record for 

FPGA and the first to empower signal and image handling 

streaming elements with execution and cost comparable with 

custom circuits. 

 

 

http://www.jetir.org/
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Processor_(computing)
https://en.wikipedia.org/wiki/Instruction_(computing)
https://en.wikipedia.org/wiki/Instruction_fetch
https://en.wikipedia.org/wiki/Register_file
https://en.wikipedia.org/wiki/Temporary_variable
https://en.wikipedia.org/wiki/Multi-core
https://en.wikipedia.org/wiki/Multi-core
https://en.wikipedia.org/wiki/SIMD


© 2018 JETIR July 2018, Volume 5, Issue 7                                                                 www.jetir.org  (ISSN-2349-5162)  
 

JETIR1807964 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 439 
 

Single Precision Representation 

Single precision, also called as "float" in the C language 

family,  is a binary format that occupies 32 bits (4 bytes) and its 

significant has a precision of 24 bits (about 7 decimal digits). 

The single precision floating point format has an 8 bit 

exponent and 26 bit mantissa plus a sign bit. It is a 32 bit 

representation and its bias value is equal to 127. 

 
Figure 1.1  IEEE-754 Single Precision Floating Point Format 

 
Figure 1.2  Flowchart for Multiplication 

 

Floating point representation is useful to obtain the most accurate 

and nearest absolute value. Decimal representation of any number 

is possible and the operations between them are quiet easily 

analyzed. We have different two different types of representation 

one is single precession and other double precision representation. 

2. THE FPGA PROCESSING ELEMENT 

The FPE instruction set architecture is a RISC load store PE, 

SIMD, and SISD (i.e., single-path SIMD) variations of which are 

shown in Fig.1. This architecture composes of program counter 

(PC), program memory (PM), Register File (RF), Instruction 

decoder(ID), branch detection, Data Memory (DM), immediate 

memory, and an ALU in view of the DSP48E in Xilinx FPGA. A 

COMM (communication) module allows coordinate 

inclusion/extraction of information into and out of the FPE 

pipeline. The FPE is extremely lean, fusing just those parts basic 

to programming programmability.  

 
Fig.1 FPE in SISD mode 

 

By guaranteeing total most minimal cost FPE structure, the 

economies of scale deliver sensational diminishments in 

multicore asset cost. Be that as it may, this comes at the cost of 

flexibility: once blended, the FPE does not show an 

indistinguishable level of flexibility from a general delicate 

processor in light of the fact that the engineering is exceptionally 

compelled at configuration time to help the coveted task with 

most astounding execution and least cost; henceforth, while it 

might be reprogrammed after blend, it can't empower broadly 

useful activity in the way of a standard softcore. Likewise, to 

limit cost while supporting programming programmability, the 

FPE works under two considerable outright confinements.  

1) Processor and ISA: The FPE is a load store processor which 

can just source non-consistent ALU operands and deliver results 

to RF. 

 2) Addressing Modes: The FPE underpins just direct memory 

addressing. 

2.1 Instruction set Architecture: 

Instruction Set Architecture (ISA) is a theoretical model 

of a PC. It is likewise alluded to as design or PC engineering. An 

acknowledgment of an ISA is called a usage. An ISA licenses 

different execution that may change in execution, physical size, 

and cost (in addition to other things); in light of the fact that the 

ISA fills in as the interface amongst programming and equipment. 

Programming that has been composed for an ISA can keep 

running on various executions of the same ISA. These 

advancements have brought down the cost of PCs and to build 

their appropriateness. Thus, the ISA is a standout amongst the 

most imperative deliberations in processing today.  

An ISA characterizes everything a machine dialect 

developer has to know so as to program a PC. What an ISA 

characterizes contrasts between ISAs; when all is said in done, 

ISAs characterize the upheld information writes, what state there 

is, (for example, the principle memory and registers) and their 

semantics, (for example, the memory consistency and tending to 

modes), the guideline set (the arrangement of machine directions 

that includes a PC's machine dialect), and the input/output 

demonstrate. In order to analyze the flow of the data from 

one block to another we need a set of instructions which can help 

us declare the data accordingly. 

 
Table-1 FPE Instruction Set 

These instructions are further declared with a particular 

width and depth of the components for further analysis. 

 

3. Implementation of Streaming Accelerator Elements: 

 To help achieve the required demands, a novel SAE is 

proposed. The SAE keeps up independent conduct and a product 

programmable lean design, however, the requirement is the 

capacity to stream information into and out of task sources and 

goals and through the ALU without the requirement for load and 

store cycles. This gushing takes two structures. 

 1. Internal: Peer/direct access to RF, DM, COMM, and IMM 

without the requirement for delay cycles i.e., load store cycles.  

2. External: Unbuffered gushing of information from input FIFOs 

to output FIFOs by means of just ALU. 

 

http://www.jetir.org/


© 2018 JETIR July 2018, Volume 5, Issue 7                                                                 www.jetir.org  (ISSN-2349-5162)  
 

JETIR1807964 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 440 
 

 
Fig. 3.1 SISD SAE Architecture 

As we see in the above figure there are different blocks 

for defining a path. By using the streaming accelerator elements 

in SISD approach we see that it possess three distinguish 

characteristics a) Independent ID block is designed.(Defined 

block) 

b) Flex Data realisation. 

c) Comm_get and Comm_put blocks which define a 

ditinguished path.  

In the SAE, ID and FlexData rule full pipeline stages. 

The ID decides the source/goal of any direction operand/result, 

with the greater part of the potential sources or goals of 

information joined in FlexData to enable each to be tended to 

with break even with inactivity; this flat memory engineering is 

interesting to the SAE and particular from that utilized by some 

other softcore processor. Its impact is to lessen the multifaceted 

nature of getting to every one of the unmistakable operand 

sources by means of a normal dataflow.  

On the off chance that these were not in a similar 

pipeline arrange, guideline unravel and pipeline administration 

would be significantly muddled to adjust the information 

touching base at the ALU with variable idleness. Subsequently, 

information operands and results might be sourced/created to any 

of IMM, RF, DM, or COMM with indistinguishable pipeline 

control and without the requirement for express load and store 

cycles or guidelines for DM or COMM.  

 
Fig. 3.2 SAE ALU access path 

 
Fig. 3.3 ALU with FPU Internal Block Diagram 

In addition , in order to enable unbuffered streaming operation 

from input to output FIFOs through ALU, synchronous read/write 

with outer FIFOs is required, with access to ALU in the two 

bearings.  

Keeping in mind the end goal to help this capacity, 

decoupled COMMGET and COMMPUT segments are conveyed 

in the SAE inside FlexData. Note that these both live in a similar 

pipeline arrange and, consequently, fit in with the consistent 

dataflow pipeline kept up over the rest of FlexData. Also, since all 

of COMMGET, COMMPUT, DM, RF, and IMM get to 

unmistakable memory assets (with isolated memory banks 

utilized inside the SAE and a FIFO utilized per off-SAE 

correspondence channel), there is no memory transfer speed 

coming about because of decoupling . 

3.2 INSTRUCTION DECLARATIONS:  

1. RPT repeat_num, repeat_count 

2. BEQ/BGT/BLT offset, opA, opB 

3. JMP offset 

4. GET/PUT addr, dest 

5. MUL/ADD/SUB dest, opA, opB 

6. LD/ST mem_addr, reg_location 

7. LDIMM/STIMM dest, source 

These are some configurations of the instructions that are 

to be declared in the above pattern. Their width and depth are 

consired as shown the below table. 

To permit include (yield) of information from (to) the 

suitable source (goal), both the physical source segment (RF, 

COMMGET, COMMPUT, DM, and IMM) and the fitting 

locations inside each (i.e., memory area or correspondence 

channel) must be transferred inside the guideline. To oblige this, 

SAE ALU directions are communicated in the accompanying 

arrangement:  

INSTR dest, opA, opB 

 where INSTR is the guideline class, dest identifies the outcome 

goal/output, and opA and opB recognize the source operands. 

 

Table 3.2 Instruction coding of ALU 

 
The conceivable encodings of every one of dest, opA, 

opB and the goal are depicted in Table 3.2. As depicted in Table 

3.2, all of RF, DM, COMMGET, and COMMPUT are tended to 

straightforwardly by means of the total locations of the 

source/sink registers, memory areas, or outside channel, 

individually. 

 Steady operands are hard-coded into the direction and 

IMM areas distributed by the constructing agent. The sizes of the 

address fields in the final directions are powerfully produced to 

coordinate the configuration of the processor and program—i.e., 

five bits are relegated for enroll area for a 32-component RF, six 

bits for a 64-component RF, et cetera. Guideline fields for RF, 

DM, COMMGET, and COMMPUT addresses are 

correspondingly decided at compile time by the SAE constructing 

agent as depicted in table 4.1.  

The considerations taken for the instructions are listed 

below with their opcode,with, considered depth and bitwise 

declarations for inputs and outputs. 

 

The exceptionally adaptable nature of the FPE is kept up 

in the SAE, with the expansion of parameters specific to the 

configurable FlexData. 

 

 

 

 

 

 

 

 

 

 

http://www.jetir.org/


© 2018 JETIR July 2018, Volume 5, Issue 7                                                                 www.jetir.org  (ISSN-2349-5162)  
 

JETIR1807964 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 441 
 

Table 3.3 Configuration parameters of Flexdata 

 
 

The sizes of FlexData's constituent segments can be 

defined presynthesis such to empower activity specific cost 

enhancement by means of the configuration parameters depicted 

in Table 3.3. 

 These configuration parameters empower generous 

customization: data_ws controls the information word estimate 

for the SAE, while the profundity of each the IMM, DM, and RF 

is set by imm_depth, dm_depth, andrf_depth, separately. 

Furthermore, the quantity of physical defer cycles embedded by 

FlexData is defined pre-union by means of pp_depth: any of zero, 

maybe a couple cycles might be embraced.  

There are two certain issues of note concerning 

configuration parameters. For the situation where any of 

imm_depth, dm_depth, andrf_depth are zero, the related segment 

(IMM, DM, and RF) is missing from the incorporated form of 

FlexData; this permits irrefutably the base arrangement of assets 

required to understand an offered task to be acknowledged, 

limiting expense, with the additional benefit of decreasing the 

span of the FlexData multiplexer whose size is configurable as per 

similar parameters. Moreover, the nature of individual parts can 

change.  

For example, the DM segment is configured to permit 

realization as either distributed RAM (DisRAM) acknowledged in 

the FPGA programmable rationale LUTs, or by utilizing the 

devoted on-chip BRAM. The limit for this choice is configurable 

as dm_thr. Specifically, if the DM limit does not surpass dm_thr, 

at that point it will be acknowledged utilizing DisRAM; else, it 

will be acknowledged utilizing BRAM.  

This configurability enables this significant structural 

choice to be made in an application specific way. For the rest of 

this paper, this limit is taken to be 256 words. The SAE shapes 

the essential building square of huge scale streaming multicore 

structures in a way like that of the FPE—it is a configurable-

width SIMD with coordinate outer correspondence capacity from 

which systems might be created by means of FIFO lines.  

3.3 Streaming processing block: 

 The efficiency increments coming about because of the 

spilling idea of the SAE are profoundly reassuring, yet in 

numerous activities, tending to modes other than basic direct 

tending to are fundamental; for example, an ordered guideline 

breakdown for the augmentation of two 32 × 32 matrix is 

appeared in Fig. 3.3. 

 
Figure  3.3 SAE Itemised MM operations 

These report an indistinguishable high yet in addition to 

a great degree expansive projects—35375 directions for MM. 

This places an overwhelming interest on FPGA memory assets 

for PM.  

These extraordinary sizes take after from the limitation 

to coordinate tending to, which directs that the quantity of 

guidelines is limited beneath, by the quantity of ALU activities; 

for MM, this deciphers a substantial number of directions. MM 

out a given activity commonly, over and again, on little subsets of 

the info information at consistently divided memory areas 

prompting profoundly redundant conduct on routinely dispersed 

memory areas 

 
Fig. 3.3 Matrix multiply operand addressing of SPE block 

 

For example, consider square MM of two networks A ∈ 

Rm×n and B ∈ Rn×p when m = n = p = 8 through four 4×4 

submatrices. Expecting that An and B are put away in DM 

adjacently and in push major order and that C is derived in push 

major order, and the operand memory get to is appeared in Fig. 

4.4. To register a component of a submatrix of C, the inward 

result of a four-component vector of bordering areas in An (a line 

of the submatrix) and a four-element vector of components 

separated by eight areas in B (a segment of the submatrix) is 

framed. 

 A while later, either or both of the line of A or segment 

of B are increased to determine the following component of C, 

before the task continues to the following submatrix. The 

subsequent memory gets to are profoundly unsurprising: a normal 

rehashed increase along the lines of An and the segments of B and 

intermittent realignment to another line of An or potentially 

segment of B rehashed numerous circumstances previously 

realigning for resulting submatrices. 

 
Table 3.4 Streaming matrix multiplication code 

 

This conduct is minimally spoken to utilizing a circle 

based code—for instance, MM pseudocode is given in table 3.4. 

Each rehash activity understands a predefined number of cycles 

over its body, with affine mixes of the iterators j, k, orl ordering 

the operands. To help this very minimal articulation of conduct 

for activities, for example, MM, the SAE needs to consolidate 

two offices: rehash style conduct with the capacity for a solitary 

guideline to address pieces of memory  

at consistently dispersed areas when summoned various 

circumstances by a repeat. While repeat compose directions are 

clear in regular processors, there is no record of a softcore 

processor for FPGA which understands these abilities and all 

things considered their acknowledgment inside the stringent cost 

limitations of the FPGA accelerators.  

A few chips enables parts of the program memory to be 

adjusted in pieces (sections), yet you can't store factors in the 

program memory. It is regularly conceivable to store constants - 

i.e. introduced factors that you don't change - in the program 

memory.  

Your PC likewise has data memory and program memory. 

However, the program memory is little in the PC - it is only for 

http://www.jetir.org/


© 2018 JETIR July 2018, Volume 5, Issue 7                                                                 www.jetir.org  (ISSN-2349-5162)  
 

JETIR1807964 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 442 
 

capacity of the boot messages you see when the PC boots, and 

(frequently, yet not generally) the configuration pages where you 

characterize on the off chance that you have a floppy introduced, 

if the PC should bolster a USB console and so on.  

Program is guideline what CPU executes, information 

will be data that program utilizes for customization and capacity 

of how the program should convey those directions. 

 
Fig. 3.6 Flow of PCM 

 

The SAE is enlarged with the capacity to perform rehash 

write conduct. This implies dealing with the PC, to such an extent 

that in case of such a guideline, the body of the rehash 

explanation is executed a number of times. This task is fulfilled 

by a PC manager (PCM). The structure of the SAE PC and PCM 

and the conduct of the PCM are appeared in Fig. 4.5. The PCM 

controls the refresh of the PC given its past esteem and the 

guideline referenced in PM given snippets of data—the begin and 

end lines of the body articulations to be rehashed S and E, the 

quantity of reiterations N. These are encoded in a RPT direction 

added to the SAE guideline set. These guidelines are encoded as  

RPT N S E. 

The PCM mediates the PC to guarantee the right number 

of redundancies of the body proclamation and to help the 

development of settled rehash activities by establishing the 

flowchart in Fig. 10. Specifically, for a n-level home, it keeps up 

n + 1-component arrangements of measurements, with an extra 

component added to help infinite reiteration of the best level 

program, thought to be a verifiable infinite rehash guideline. For 

layer I of the circle settle, the begin line, end line, and number of 

redundancies are put away in component I +1 of the rundowns s, 

e, and n, individually. 

 In all cases s0 = 0, e0 =∞and n0 =∞to speak to the begin 

line, end line, and number of reiterations of the best level program 

[Fig. 3.6].  

Every time a rehash guideline is experienced I, the 

present record into s, e, andn is increased and the estimations of 

the new component introduced utilizing S, E, andN from the 

decoded direction in (3). 

 General PC refreshing at that point continues (1) until 

the point when either another rehash guideline is identified or 

until the point when ei is experienced. 

 In the last case, the quantity of cycles of the present 

explanation is decremented (2), or if ni = 0, the majority of the 

emphasess of the present repeat proclamation have been finished 

and control of the circle settle returns to the past level (4).  

The PCM activity depicted in Fig. 3.6 was 

acknowledged utilizing behavioral VHDL and blended. The cost 

of the essential PCM segment is 36 LUTs, a cost which should 

just be acknowledged in situations where it can empower a 

significant cost/execution benefit, for example when it can 

considerably diminish program measure and, along these lines, 

PM cost, with the sparing ideally exceeding the cost of the PCM. 

To permit least cost for each application, the PC is configurable 

by means of the parameters recorded in .  

The pcm_en dictates whether the PCM is incorporated 

into the blended design or else it takes a Boolean esteem. For the 

situation where a PCM is incorporated, the greatest profundity of 

circle settle is configurable by means of pcm_en which can take, 

theoretically, any esteem. In that capacity, the PCM perhaps 

included or excluded and hence, imposes no cost when it isn't 

required; besides, when it is incorporated, its cost can be tuned to 

the current application by changing the most extreme profundity 

of circle settle.  

 

4. Simulation and Synthesis Results 

Figure 4.1 is the simulation wave form of project, Here the 

instructions are given as input through input variables and top 

module is generated which shows the floating point operations 

carried out. By observing the the synthesis results we can say that 

the speed of operation is increased. 

 
Figure 4.1 Wave form of Top Module for floating point 

operations 

Figure 4.2 is the simulation wave form of memory 

module . 

 
Figure 4.2 Wave form of memory module 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.jetir.org/


© 2018 JETIR July 2018, Volume 5, Issue 7                                                                 www.jetir.org  (ISSN-2349-5162)  
 

JETIR1807964 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 443 
 

5. Conclusion 

Soft processors for FPGA experience the effects of 

generous degradation in performance and cost with respect to 

custom circuits. The SAE implemented uses a technique which 

allows for maximum efficiency which is compatible with the 

custom circuits. We are implementing this for floating point 

numbers which perform arithmetic operations like addition, 

subtraction, and multiplication for matrix multiplication. These 

empower efficiency routinely more than 90% and execution and 

cost which are practically identical with custom circuit 

accelerators and well ahead of time of existing soft processors. 

Also, it is indicated how SAE-based MM (Matrix Multiplication) 

accelerators offer changes in asset/cost by up to three degrees of 

magnitude. To the best of our insight, these capacities are 

extraordinary, for FPGA, as well as for any semiconductor 

innovation. 

Advantages: 

 It is more performance efficient compared to softcore 

processors and achieves almost as good performance as 

that of custom circuits. 

Future scope: 

As future work, however furthermore the FPGA 

accelerators might be utilized to additionally facilitate the outline 

procedure. For instance, programmability of the SAE implies that 

it might likewise be utilized as a memory controller to execute 

custom memory access. 

 

References 
[3] H. Y. Cheah, F. Brosser, S. A. Fahmy, and D. L. Maskell, 

"The iDEA DSP square based delicate processor for FPGAs," 

ACM Trans. Reconfigurable Technol. Syst., vol. 7, no. 3, Aug. 

2014, Art. ID 19 

[2] A. Severance and G. Lemieux, "VENICE: A reduced vector 

processor for FPGA applications," in Proc. Int. Conf. Field-

Program. Technol. (FPT), Dec. 2012 

[3] X. Chu and J. McAllister, "Programming defined circle 

unraveling for FPGA-based MIMO location," IEEE Trans. Flag 

Process., vol. 60, no. 11,  Nov. 2012.  

[4] P. Wang and J. McAllister, "Delicate center stream processor 

for sliding window applications," in Proc. IEEE Workshop Signal 

Process. Syst. (Tastes), Oct. 2013 

 

Author Profile: 

 

Chinta Sravani She received Bachelor’s Degree in 

2015 from Electronics and Communication of 

Engineering from Institute of Aeronautical 

Engineering. She is pursuing M. Tech in VLSI System 

Design from CMR Institute of Technology  

Dr. Prasad Janga He received Bachelor’s from 

V.R. Siddhartha Engineering College and has 

accomplished Master’s Degree from SITAMS. He 

is pursuing PhD from (NIU)-Delhi. He has an 

academic experience of 9 years in teaching field 

and is working as Associate Professor in CMR 

Institute of Technology. 

 

Mrs. S. SriBindu She is working as an Associate 

Professor in CMR Institute of Technology. 

 

 

 

 

http://www.jetir.org/

